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• Inclusion-exclusion principle

• Pigeon-hole principle



Pasacal's triangle.

Another application of the 
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formula is 
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Fact.

What happens if we put 𝑎 = 𝑏 = 1? Nothing unexpected:

1 + 1 𝑛 =෍
𝑘=0

𝑛
𝑛
𝑘

= 2𝑛 = 2 𝑛

In other words, the number of subsets in an n-element set is 

equal to the number of 0-element subsets, plus the number of 

1-element subsets etc. Surprise, surprise! 



Fact.

෍
𝑘=0

𝑛
𝑛
𝑘
(−1)𝑘 = 0

Proof.

Just put a = −1 and b = 1 in the binomial theorem.



Fact.

෍
𝑘=0

𝑛
𝑛
𝑘

= ෍
𝑘=0

𝑛
𝑛

𝑛−𝑘

Proof.

Trivial because for each 𝑘, 
𝑛
𝑘

= 𝑛
𝑛−𝑘



Inclusion-exclusion principle

The rule of addition allows us to express the size of the union 

of a finite number of finite sets in terms of sizes of individual 

sets in the case where sets are mutually (pairwise) disjoint. 

What if they are not? 

That's where the inclusion-exclusion principle comes into play.



Theorem (Inclusion-exclusion principle)

For any two sets 𝐴 and 𝐵, 𝐴𝐵 = 𝐴 + 𝐵 − |𝐴𝐵|.
Proof. 

Obviously, 𝐴 ∪ 𝐵 = 𝐴\𝐵 ∪ 𝐵 and 𝐴\𝐵 ∩ 𝐵 = ∅. 

On the other hand, 𝐴 = 𝐴\B ∪ (𝐴 ∩ 𝐵), hence |𝐴\B| =
𝐴 − |𝐴 ∩ 𝐵|. From this we get

|𝐴 ∪ 𝐵| = | 𝐴\B ∪ 𝐵| = |(𝐴\B)| + |𝐵| = |𝐴| − |𝐴 ∩ 𝐵| +
|𝐵|. QED

The term “inclusion-exclusion” comes from another way of 

proving this theorem. Namely, writing |𝐴| + |𝐵| we include all 

elements of 𝐴 ∪ 𝐵, but those from 𝐴 ∩ 𝐵 are included (counted) 

twice, so they must be “excluded” by subtracting |𝐴 ∩ 𝐵| from 

|𝐴| + |𝐵|.



Example. In a group of 25 students 13 chose Algebra as an 

obligatory course, and 17 chose Ballroom Dancing. How many 

decided to take both? 

Let 𝐴 and 𝐵 denote, respectively, the sets of students who chose 

Algebra and Ballroom Dancing. As we know, |𝐴| =13, 𝐵 =17 

and |𝐴 ∪ 𝐵| = 25. The inclusion and exclusion principle yields 

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|, hence

𝐴 ∩ 𝐵 = 𝐴 + 𝐵 − 𝐴 ∪ 𝐵 = 13 + 17 − 25 = 5.



Example. How many permutations of [6] begin with 1 

AND end with 6? 

This is really trivial. We place 1 in the first position, 6 in 

the last position and the remaining 4 digits can be arranged 

in 4! = 24 ways. 



Example. How many permutations of [6] begin with 1 OR end 
with 6? 

This is a bit harder.
There are 5! permutations beginning with 1 and 5! permutations 
ending on a 6. There are exactly 4! permutations beginning 
with 1 AND ending on a 6. 
Hence, by the inclusion-exclusion principle, our answer is 

5! + 5! − 4! = 240 − 24 = 216. 



What will happen if we apply this strategy to 3 sets, 𝐴, 𝐵 and 𝐶? We 

can consider 𝐴 ∪ 𝐵 ∪ 𝐶 the union of two sets, 𝐴 ∪ 𝐵 and 𝐶 (in fact 

this is what it is, we right 𝐴 ∪ 𝐵 ∪ 𝐶 only because ∪ is associative) 

and apply our previous formula recursively: |𝐴 ∪ 𝐵 ∪ 𝐶 | =
|(𝐴 ∪ 𝐵) ∪ 𝐶| =

𝐴 ∪ 𝐵 + 𝐶 − | 𝐴 ∪ 𝐵 ∩ 𝐶| =
𝐴 ∪ 𝐵 + 𝐶 − |(𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)| =
𝐴 ∪ 𝐵 + 𝐶 − ( 𝐴 ∩ 𝐶 + 𝐵 ∩ 𝐶 − |(𝐴 ∩ 𝐶) ∩ (𝐵 ∩
𝐶)|) =
𝐴 + 𝐵 + 𝐶 − 𝐴 ∩ 𝐵 − 𝐴 ∩ 𝐶 − |𝐵 ∩ 𝐶| + |𝐴 ∩ 𝐵 ∩
𝐶|.
A common-sense explanation is that the elements in A ∩ C ∩ B are 

included 3 times in |𝐴| + |𝐵| + |𝐶| and excluded 3 times by 

(− 𝐴𝐵 − 𝐴 ∩ 𝐶 − |𝐵 ∩ 𝐶|) so they must be included again via  

+ |𝐴 ∩ 𝐶 ∩ 𝐵|.



Let 𝐴1, 𝐴2, … , 𝐴𝑛 be finite sets. Denote 

𝑆1 = |𝐴1| + |𝐴2| + … + |𝐴𝑛|

S2 = σ1≤𝑖1< 𝑖2≤𝑛
𝐴𝑖1 ∩ 𝐴𝑖2 (intersections of pairs)

⋮

Sk = σ1≤𝑖1< 𝑖2< ...< 𝑖𝑘≤𝑛
𝐴𝑖1 ∩ 𝐴𝑖2 ∩ . . .∩ 𝐴𝑖𝑘 (intersections of k-tuples)

Theorem. (generalized inclusion-exclusion principle)

|𝐴1 𝐴2 …  𝐴𝑛| = 𝑆1−𝑆2 + 𝑆3 + … + −1 𝑛+1 𝑆𝑛

Proof.

It can be proved by induction on n using the same trick we used 

to justify the inclusion-exclusion principle for 3 sets. We skip 

the details. QED



Example.

In how many ways can we hand out 6 (distinguishable) Stingers 

to 4 guerillas so that each can launch at least one (and we keep 

none for ourselves)?

Firstly, in how many ways can we give 6 Stingers to 4 guerillas 

with no additional conditions? Obviously 46 = 4096. From this 

we must remove those assignments which leave at least one of 

the guerillas unarmed. Denote by 𝐴𝑖 the set of those assignments 

which give no Stinger to guerilla number i. We need to calculate 

4096 – |𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4|, which means we must calculate 

|𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4|. This looks like a job for the inclusion-

exclusion principle.



First, for each 𝑖 |𝐴𝑖| = 36 hence 𝑆1 = 436 = 2916. 

𝑆2 is a bit more tricky, |𝐴𝑖 ∩ 𝐴𝑗| is the number of assignments 

where 𝑖 and 𝑗 don't get a Stinger which means all 6 go to the 

remaining two people, i.e., |𝐴𝑖 ∩ 𝐴𝑗| = 26. The number of such 

cases is the number of choices of 2 out of 4 guerillas, 4
2

, so 

𝑆2 =
4

2
26 = 664 = 384. 

Next case is three get nothing, the three can be chosen in 4
3

ways and all Stingers go to the remaining one – this can only be 

achieved in one way, so 𝑆3 =
4

3
= 4. 

The last case is nobody gets a Stinger – this does not happen; we 

are supposed to give away all six so 𝑆4 = 0. 

The final answer is then 

46–
4
1

36 +
4
2

26–
4
3

16 +
4
4

06

= 4096– 2916 + 384 – 4 + 0 = 1560



How can we translate the last example into mathematish? We 

assigned Stingers to guerillas, which sounds like we constructed

a function from the set of Stingers into the set of guerillas. We 

also wanted every guerilla to be able to launch a Stinger. This 

means we wanted our assignments to be onto functions, 

surjections.

Our solution can be generalized to a formula for number of 

surjections from an n-element into a k-element set. 



Theorem.

The number of surjections form [n] onto [k] is

𝑘𝑛 –
𝑘

1
𝑘 − 1 𝑛 +

𝑘

2
𝑘 − 2 𝑛 + … + −1 𝑘−1 𝑘

𝑘 − 1
1𝑛

This can be re-shaped into 

−1 0 𝑘
0

kn + −1 1 𝑘

1
(𝑘 − 1)n + −1 2 𝑘

2
𝑘 − 2 𝑛 + … +

−1 𝑘−1 𝑘
𝑘 − 1

1𝑛 + −1 𝑘 𝑘
𝑘

0𝑛 =

෍

𝑖=0

𝑘

−1 𝑖 𝑛
𝑖

𝑘 − 𝑖 𝑛



A trick to remember – the complement principle.

Sometimes it makes sense to enumerate the complement of our 

set and then subtract the result from the size of the universal set. 

In the last example, in order to count surjections from [n] into [k], 

we subtracted from the well-known | 𝑘 𝑛 | the number of non-

surjections, which we calculated via inclusion-exclusion 

principle.



Example. (non-distinguishable case)

In how many ways can we hand-out 6 non-distinguishable 

Stingers to 4 guerillas so that each will be able to launch at least 

one (and we keep none for ourselves)?

The task looks similar to that of painting indistinguishable 

benches, except that we want to use each color at least once. 



Guerillas will now play the part of colors (say 𝑐1, 𝑐2, 𝑐3 and 𝑐4) 

and Stingers play the part of benches. What used to be painting 

of a bench can now be thought of as painting (labeling) a Stinger 

with the "color" identifier of a particular guerilla. If 𝑥𝑖 denotes 

the number of Stingers given to 𝑐𝑖 we are interested in the 

number of such solutions of 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 6 that for each 

i, 𝑥𝑖1

In the picture
𝑥1=3
𝑥2= 𝑥3 = 𝑥4 = 1



Can we adapt our stars-and-bars strategy to this task?

First, we give a Stinger to each guerilla. Since Stingers are 

indistinguishable this can be done in one way only and it 

guarantees that each guerilla will eventually have at least one 

weapon. Then we distribute the remaining 2 launchers among 4 

guerillas using our regular stars-and-bars strategy. This can be 

done in 4 + 2 − 1
4 − 1

= 5
3

= 10 ways 

(2000,0200,0020,0002,

1100,1010,1001

0110,0101

0011)
The picture illustrates the first

solution. Two extra launchers

go to blue (c1) and none to the 

others.



The last formula can be easily generalized as

Theorem.

The number of k-element subsets with nonzero repetitions of an 

n-element set is 
𝑘 − 1
𝑛 − 1

.

Proof. The proof is almost exact copy of the solution of the 

previous example. 

Lesson to remember.

It is more important to understand the method use in the proof 

than to memorize the theorem. This way you will be able to 

adjust the theorem to a different purpose and you will be able to 

reconstruct the theorem in case a memory 



Theorem (The pigeon-hole principle)

Let 𝑋 and 𝑌 be two finite sets such that |𝑌| = |𝑋|−1 and 𝑋  2
no function 𝑓: 𝑋→𝑌 is one-to-one.

Proof. (Induction on 𝑛 = |𝑋|)

Part 1. 

𝑛 = 1, 𝑌 is empty, there are no functions from 𝑋 into 𝑌 which 

means no function is one-to-one (and also every function is one-

to-one). 

𝑛 = 2 then |𝑌| = 1 and the only function from 𝑋 into 𝑌 maps 

both element of 𝑋 to the only element of 𝑌.



Part 2.

We must prove that for every 𝑛  2,

if 

there is no 1-1 function from an n-element X into an n-1-element Y

then

there is no 1-1 function from an n+1-element X into an n-element Y.

It is complicated precisely because it seems so trivial.



Let 𝑛  2. Denote 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛+1} and let |𝑌| = 𝑛.

(By contradiction). Suppose that there exists a 1-1 function 

𝑓: 𝑋 → 𝑌. We can label elements of 𝑌 with 𝑦1, 𝑦2, … , 𝑦𝑛 in such a 

way that 𝑓 𝑥𝑛+1 is labeled 𝑦𝑛. 

Denote by 𝑋∗ = 𝑋 ∖ {𝑥𝑛+1} and 𝑌∗ = 𝑌 ∖ {𝑦𝑛}.

Consider 𝑓∗ = 𝑓|𝑋∗ . We can safely claim that 𝑓∗: 𝑋∗ → 𝑌 .

In addition, since 𝒇 is 1− 1 and 𝒇 𝒙𝒏+𝟏 = 𝒚𝒏, 𝒚𝒏 is not the 

value of 𝒇 for any element of 𝑿 other than 𝒙𝒏+𝟏, we can also 

claim that 𝒇∗: 𝑿∗ → 𝒀∗ (can you see the difference?). Since 

every restriction of a 1− 1 function is also 1− 1, we have 

constructed a 1− 1 function from an n-element 𝑋∗ into an (n−1)-

element 𝑌∗ − contrary to the induction hypothesis. QED



In addition, since 𝒇 is 1− 1 and 𝒇 𝒙𝒏+𝟏 = 𝒚𝒏, 𝒚𝒏 is not the 

value of 𝒇 for any element of 𝑿 other than 𝒙𝒏+𝟏, we can also 

claim that 𝒇∗: 𝑿∗ → 𝒀∗.

Why is the emphasis? Because without this part we could not 

claim that 𝑓∗: 𝑋∗ → 𝑌∗ is a function at all so we would not be 

able to use our induction hypothesis.



The pigeon-hole principle may look trivial but it is surprisingly 

useful in the sense that it allows us to solve problems which look 

hard or impossible to solve any other way.

Example.

Prove that every n-element set of integers 𝑎1, 𝑎2, … , 𝑎𝑛 has a 

(nonempty) subset whose element sum is divisible by n.

It is trivially true for 𝑛 = 1 and very easy for 𝑛 = 2. However, an 

attempt to do this by induction is doomed.



Example.

Prove that every n-element set of integers 𝑎1, 𝑎2, … , 𝑎𝑛 has a 
(nonempty) subset whose element sum is divisible by n.

Solution.
Denote by 𝑓(𝑘) = (𝑎1 + 𝑎2 +⋯+ 𝑎𝑘)(𝑚𝑜𝑑 n) for k=1,2, … ,n.

Case 1. For some k, 𝑓(𝑘) = 0. Then our subset is 𝑎1, 𝑎2, … , 𝑎𝑘 .

Case 2. For each k, 𝑓 𝑘 ≠ 0. Then 𝑓 maps {1,2,… , 𝑛} into 
{1,2,… , 𝑛−1}. By the PHP (not the programming language!) 
there exist 𝑝 and 𝑞, 𝑝 < 𝑞, such that 𝑓(𝑝) = 𝑓(𝑞). This implies 
that 

(𝑎1 + 𝑎2 +⋯+ 𝑎𝑞)− (𝑎1 + 𝑎2 +⋯+ 𝑎𝑝) = (𝑎𝑝+1 + 𝑎𝑝+2 +
⋯+ 𝑎𝑞) is divisible by n, hence our set is {𝑎𝑝+1, 𝑎𝑝+2, … , 𝑎𝑞}. 
There may exist other such subsets, of course.


